
Why Events Are A Bad Idea

Rob von Behren, Jeremy Condit, 
and Eric Brewer
University of California at Berkeley

Presented by: Mikael Fernandus Simalango

Summary

� Authors of this paper want to convey 
their statement that thread-based 
system is comparable with event-system is comparable with event-
based system in term of achieving 
highly concurrent applications



Highly Concurrent Apps

� It’s hard to build because:
� Handling large numbers of concurrent task 

requires the use of scalable data structures
These systems typically operate near maximum � These systems typically operate near maximum 
capacity -> creating resource contention and 
high sensitivity to scheduling decisions

� Race conditions and subtle corner cases 
(problem when parameters are extreme) are 
common -> debugging and code maintenance 
becomes difficult

Why Events Are Considered 
Better Than Threads

� Primary reasons:
� Inexpensive synchronization due to 

cooperative multitasking
Lower overhead for managing state (no � Lower overhead for managing state (no 
stacks)

� Better scheduling and locality, based on 
application-level information

� More flexible control flow (not just 
call/return)



Threads vs Events

� Duality by Lauer and Needham

Events Threads

Event handlers MonitorsEvent handlers Monitors

Events accepted by a 
handler

Functions exported by a 
module

SendMessage/ Await Reply Procedure call, or fork/join

SendReply Return from procedure

Waiting for messages Waiting on condition 
variables

Disproval to Thread Criticisms

� Topic: Performance
� Criticism: Many attempts to use threads for 

high concurrency have not performed well
� Counter argument:

� Existing thread systems are developed in 
operation with order O(n) ->design flaw

� Optimized version of Pthreads scales quite well 
up to 100,000 threads



Disproval to Thread Criticisms 
(cont’d)

� Topic: Control Flow
� Criticism: threads have restrictive control 

flow
Counter argument:� Counter argument:
� Control flow for event system, except dynamic 

fan-in and fan-out, falls into 3 categories: 
call/return, parallel calls, pipelines which can be 
expressed more naturally with threads

� Existing event system also doesn’t use complex 
pattern for control flow

Disproval to Thread Criticisms 
(cont’d)

� Topic: Synchronization
� Criticism: Thread synchronization 

mechanisms are too heavyweightmechanisms are too heavyweight
� Counter argument:

� Adya et al show that ease in event 
synchronization us is really due to 
cooperative multitasking, not events 
themselves -> cooperative thread system 
can also reap the same benefits



Disproval to Thread Criticisms 
(cont’d)

� Topic: State Management
� Criticism: thread stacks are an ineffective 

way to manage live state -> tradeoff 
between risking stack overflow and wasting between risking stack overflow and wasting 
virtual address space on large stacks

� Counter argument:
� A proposal for a mechanism that will enable 

dynamic stack growth

Disproval to Thread Criticisms 
(cont’d)

� Topic: Scheduling
� Criticism: The virtual processor model 

provided by threads forces the runtime 
system to be too generic and prevents it system to be too generic and prevents it 
from making optimal scheduling decisions

� Counter argument:
� Lauer-Needham duality indicates that 

scheduling tricks to cooperatively schedule 
threads can also be applied at application level



Why Threads Fit Better For 
High Concurrency

� Authors’ claims:
� Topic: control flow

� Event-based programming tends to obfuscate control 
flow of the application

� Thread systems allow programmers to express control � Thread systems allow programmers to express control 
flow and encapsulate state in a more natural manner

� Topic: exception handling and state lifetime
� Cleaning up task state after exceptions and after 

normal termination is simpler in threaded system 
because the thread stack naturally tracks the live state 
for that task

� In event systems, task state is typically heap allocated 
-> rely on garbage collection

Why Threads Fit Better For 
High Concurrency (cont’d)

� Authors’ claims (cont’d):
� Topic: existing systems

� Even event-driven systems subtly prefer 
threadsthreads

� Thread systems are simpler to build, 
especially for non highly concurrent system -
> scale to high concurrency

� Topic: just fix events
� Fixing the problem with events requires more 

effort than switching to threads



Compiler Support for Threads

� Modification to compiler to support highly-
concurrent thread systems:
� Dynamic stack growth

� Allowing the size of the stack to be adjusted at run � Allowing the size of the stack to be adjusted at run 
time through compiler analysis 

� Live state management
� Reordering variables with overlapping lifetimes in 

order to prevent live variables from unnecessarily 
replaces old ones stored in memory

� Synchronization
� Compile-time analysis and warn for race condition

Evaluation for Highly 
Concurrent Thread Systems

� Benchmarking: Knot vs Haboob

Knot Haboob
Thread-based web server Event-based web server 

based on SEDA

Asynchronous I/O using UNIX 
poll() or sys_epoll()

Asynchronous I/O using Java 
NBIO

Thread pool for blocking I/O 
operation

Thread pool for event handling



Evaluation for Highly 
Concurrent Thread Systems

� Graphics showing performance Steady on 700 Mbit/s bw

Degrading

� Favor connections -> favor processing of active connections over 
accepting new one

� Favor accept -> the reverse way

Personal Opinion

� The implication of this finding:
� Compiler modification to support highly 

concurrent thread system -> modification 
is still not availableis still not available

� This won’t affect the business logic of 
higher layer -> infrastructure limitation not 
logic limitation
� Provide options to use scalable threads or 

events via libraries when they are available


