
The Enterprise Service Bus: 
Making Service-Oriented 

Architecture Real
M.T. Schmidt et al.

Presented by: Mikael Fernandus Simalango

Introduction

SOA in Early Days

Service 
Requester

Service

find

bind

-simple publish-find-bind triangle

-plain vanilla interaction:

-request-response between service 
requester and provider

-how about other interaction patterns
eg. asynchronous invocation, 

Service
Provider

Service
Registry

publish

bind eg. asynchronous invocation, 
publish-subscribe, complex events?

-we need more capabilities and 
flexibility

HOW?



Introduction

Enabling Enterprise Service Bus

Service 
Requester

Service

discover

link ESB

Service
Provider

Service
Registry

discover

Mediation
patterns

Domain
Models

Existing
Applications

ESB in A Nutshell

Formal definition:
– The infrastructure which strengthen a fully integrated and 

flexible end-to-end SOA by providing connectivity layer 
between services

– Does not include business logic of service providers, 
requestors, or containers that host the services

Services RevisitedServices Revisited
– A service : a software component that is described by meta-

data, which can be understood by a program
– Distinguishing feature of a service: meta-data descriptions 

are published to enable reuse of the service in loosely 
coupled system across networks

Hence, ESB basically deals with the meta-data



ESB in A Nutshell (cont’d)

ESB and meta-data
– Meta-data contains description of service 

requestors and providers, what they require and 
capable of providing, respectively

– The meta-data is independent of implementation 
specificsspecifics

– This meta-data is stored in ESB registry to assist 
the process of mediating and matching requestors 
and providers (link matching)

– All meta-data can be discovered, used, and 
modified at runtime

ESB in A Nutshell (cont’d)

Service capability and requirements declaration 
for meta-data

e.g. WSDL



ESB Functionalities

Core ESB Components
– Service Registry
– Link
– Mediation pattern

ESB Service Registry

Service registry manages meta-data about 
service interaction endpoints and also 
information about domain model
Domain model can be:
– A standard message sets representing general – A standard message sets representing general 

knowledge about a topic space
– Complex ontology describing concepts and their 

relation in a particular topic space



ESB Service Registry (cont’d)

ESB service registry content

ESB Service Registry (cont’d)

Endpoints need to register with the ESB
Registered service requestors are represented 
as bus service requestors (BSRs) and 
registered service providers are represented as 
bus service providers (BSPs)
Service providers that are not registered as 
BSPs are invisible to the ESB
ESB also holds details of links and mediations



ESB Links and Mediations

ESB supports two concepts to facilitate interactions 
between endpoints:
– Links

• Between service requestors and providers (interaction endpoints)
• Enable basic connectivity between interaction endpoints with a 

configurable QoS

– Mediations– Mediations
• Between interaction endpoints
• Connectivity by dynamic alterations to routing and QoS
• Allow interaction endpoints to modify their behaviours

Both realize the contract between interaction partner 
that is implicit in the declaration of the capabilities and 
requirements

ESB Links

Has two endpoints
– One for attachment to BSPs
– The other for attachment to BSRs

A link defines “ideal counterpart” for service 
requestors and providersrequestors and providers
– Can be configured manually
– Can be created dynamically based on requirements 

and capabilities of the endpoints



ESB Links (cont’d)

ESB links in a diagram

ESB Mediations

Problem: existing applications were seldom designed 
to be linked together
– Protocol mismatch
– Format mismatch
– QoS mismatch

Addressing the problem: ESB mediationAddressing the problem: ESB mediation
– Interposing mediations between service requestors and 

providers
– It can reconfigure the links between requestors and 

providers

Hence, the role is to satisfy integration and operational 
requirements within the infrastructure



ESB Mediations (cont’d)

Mediation in ESB integration model

ESB Mediations (cont’d)

Mediation point
– At the requestor -> mediation will be performed regardless of 

provider for the requestor
– At the provider -> mediation will be performed whenever 

provider receives a request, regardless of the requestor

Interface mediation
– Operate on the message payload, can change its content – Operate on the message payload, can change its content 

and structure
– Message payload: information required by service provider

Policy mediation
– Operate on message context
– Message context: available in message header, containing 

additional QoS and routing information about the link and 
mediations required between service requestor and provider



Mediation Patterns

Basic patterns for mediation:
– Monitor pattern

• Used to observe messages as they pass through the ESB without 
updating them

– Transcoder pattern
• Changes the format of the message payload without changing its 

logical content

– Modifier pattern– Modifier pattern
• Updates the payload of the message without any change to the 

context information

– Validator pattern
• Determines whether a message should be delivered to its intended 

destination or not

– Cache pattern
• Returns a valid response to the requestor without necessarily passing 

the request to a service provider

Mediation Patterns

Basic patterns for mediation (cont’d):
– Router pattern

• Changes the intended route of a message, selecting between the 
service providers associated with the mediation

– Discovery pattern
• Queries ESB registry to discover the set of service providers that 

match the requirements of the requestor, selects one of them, and match the requirements of the requestor, selects one of them, and 
routes the message to it

– Clone pattern
• Makes a copy of message and modifies its route

– Aggregator pattern
• Monitors messages from one or more sources over a time period and 

generates a new message or event , based on the input it considers



ESB Usage Patterns

Brings abstract patterns into real-world 
implementations
Provide a means for describing and defining 
interactions and component topologies at the system 
or solution level
Fundamental concept: broker application patternFundamental concept: broker application pattern
– Distribution rules are separated from applications
– Enabling flexibility in the distributions of requests and events
– Reducing the growth of point-to-point connection
– Simplifying management of network and system

ESB Usage Patterns (cont’d)

Variations of broker application pattern:
– Service and event-routing pattern
– Protocol switch pattern
– Proxy or gateway pattern
– Event distribution pattern
– Service transformation pattern
– Matchmaking pattern



Service and Event-routing Pattern

A request or event is distributed
to at most one of multiple target
providers
Target selection can be made 
based on availability, workload, based on availability, workload, 
or detection of error situation 
after looking up appropriate
service providers in the service 
registry

Protocol Switch Pattern

A routing pattern
Requestors and providers
use different network protocols
From the example:
– SOAP/HTTP requests are– SOAP/HTTP requests are

mapped into SOAP/JMS 
infrastructure



Proxy or Gateway Pattern

Another routing
pattern
It maps service 
interface or end-
points, usually to points, usually to 
provide security functions or auditing 
capabilities
A single point of contact is provided for multiple 
services and the details of inner services can 
be hidden from the service requestors

Event Distribution Pattern

Events can be distributed to one
or more target provider
Service requestors may 
subscribe themselves to get
notification about certain eventsnotification about certain events
of interest



Service Transformation Pattern

Requestors and providers
use different service interfaces
or providers of same business
function provide different 
interfacesinterfaces
ESB provides necessary
translation for the differing 
interfaces

Matchmaking Pattern

Another routing pattern
Suitable target services are 
discovered dynamically based
on a set of policy definitions
Used in dynamic environmentsUsed in dynamic environments
with hundreds or thousands 
services attached to the ESB



Conclusion

ESB leverages an integrated an flexible SOA
Service meta-data managed through a service 
registry is the key component of ESB
Clear definition of the interfaces, capabilities 
and requirements of the service will enable and requirements of the service will enable 
mediations to handle differences between 
service requestors and providers
Several ESB usage patterns exist to articulate 
abstract ESB concept into enterprise 
implementation

THANK YOUTHANK YOU


