
Survey of Publish Subscribe 
Event Systems

Ying Liu and Beth Plale
Indiana University

Presented by: Mikael Fernandus Simalango

Why Publish-Subscribe 
Systems

� Internet these days
� Changed to the scale of distributed systems

� Advantage with publish-subscribe systems
� Loosely coupled

� Flexible communication

� Enable interactivity in large scale settings

� Caveat
� Different implementations, rather difficult to 

capture commonalities



Interaction in Publish-
Subscribe Systems

� Push-based
� Messages are automatically broadcast to 

subscribers
� Provides tight consistency
� Stores minimal data

� Pull-based
� Can be more responsive to user needs [?]

� No further explanation, I tend to disagree

� Combination of both to achieve better 
scalability

Taxonomy of Publish-
Subscribe Systems

� Subject-based vs Content-based
� System architectures
� Matching algorithms
� Multicast algorithms
� Reliability and Security



Subject-based vs Content-
based

� Subject-based:
� A message belongs to groups, channels, or topics
� Users are subscribed to groups / channels / topics and 

receive messages associated with the groups

� Content-based:
� Message delivery based on a query or predicate issued by 

subscriber
� No need to learn / get info of all available groups
� But it burdens underlying system to match message for 

subscription

System Architecture

� Publish-subscribe system can be categorized into 
two general models:
� Client-server model

� A component serves as an event server or an event client
� Event server receives events, store if necessary, and 

forward
� Event server communicates with other event server to 

provide better scalability
� Event client acts as publisher, subscriber, or both

� Peer-to-peer model
� Nodes are equal. Each can act as a publisher, subscriber, 

root of a multicast tree, internal node of a multicast tree or 
any combination thereof



Client-Server Model

� General topologies
� Star topology (centralized server)
� Hierarchical topology
� Ring topology
� Irregular polygon topology

Client-Server Model (cont’d)

� Star topology
� Relies on a single event

server to broker between 
publishers and subscribers

� Does not scale well



Client-Server Model (cont’d)

� Hierarchical topology
� Hierarchical relationship between

event servers
� Clients can be either publishers

or subscribers
� Parent server only forwards 

message to its subtree
� Provide better scalability

Client-Server Model (cont’d)

� Ring topology
� Servers exist in peer-to-

peer relationship with
one another, forming a ring

� Communication between servers
is via bidirectional communication
protocol for exchanging subscriptions
and notifications



Client-Server Model (cont’d)

� Irregular polygon topology
� Similar with ring topology
� However servers are connecting each 

other in irregular polygon form instead of 
a ring

Matching Algorithm

� Subject-based system
� Simplistic way by looking up topic ID for the 

message and then determine subscribers ID
� Bayeux -> hashed-suffix mesh algorithm to 

locate subscribers and route messages across 
large network

� Echo -> establishes direct connection between a 
publisher and subscriber when the subscriber 
subscribes to the channel



Matching Algorithm (cont’d)

� Content-based system
� Matching tree algorithm

� More general term at higher level
� More refined/specific term at lower level
� Subscription through tree traversal from up to 

bottom

Multicast Algorithms

� When the system scales, it needs more 
efficient event distribution

� Which is often in form of software-based 
multicast
� Multicast: broadcasting message from one 

broker to subscribers that are associated with 
that broker

� The algorithm varies on different systems



Reliability and Security

� Reliability: delivery of the message should 
be reliable

� Security: secure delivery of message
� Key aspects:

� Authentication -> establishment of identity of originator 
of an action

� Confidentiality -> ability to keep others away from 
accessing messages

� Integrity -> requirement of keeping the message in its 
original form

� Accountability -> ensuring only proper credential is 
responsible for sending the message

Surveyed Pub-Sub Systems

� Gryphon
� Content-based using matching tree algorithm
� Client-server model
� Link matching algorithm for multicast
� Broker organization protocol for fault tolerant 

delivery
� Targeted toward the distribution of large 

volumes of data in real-time to thousands of 
clients in a large public network



Surveyed Pub-Sub Systems 
(cont’d)

� Scribe
� Subject-based with numeric keys and 

node IDs for matching algorithm
� Peer-to-peer model
� Group-based algorithm form multicast
� Best-effort delivery

Surveyed Pub-Sub Systems 
(cont’d)

� Bayeux
� Based on Tapestry
� Subject-based with hashed-suffix mesh  

algorithm
� Peer-to-peer model
� Tolerating failures in routers and network 

links



Surveyed Pub-Sub Systems 
(cont’d)

� Siena
� Content-based with Binary Decision 

Diagram algorithm
� Client-server model
� Hierarchical server topology

Surveyed Pub-Sub Systems 
(cont’d)

� NaradaBrokering
� Content-based using matching tree from 

the content of subscriptions or SQL 92 
based on JMS or XML attribute-value 
pairs for topic subscriptions

� Client-server model (hierarchical topology)
� Routing through shortest path 

computations



Surveyed Pub-Sub Systems 
(cont’d)

� XMessages
� Hybrid subject-based and content-based 

using filtering match algorithm
� Client-server model
� Reliable event service

� Keep trying to contact down network target 
until it’s up

Surveyed Pub-Sub Systems 
(cont’d)

� Echo
� Hybrid subject-based and content-based 

using mapping from topics to the IDs of 
channels providing the topics

� Peer-to-peer topology
� Has efficient event transfer through 

binary encoding of data using Portable 
Binary IO



Surveyed Pub-Sub Systems 
(cont’d)

� JMS
� Java API that allows applications to create send, 

receive, and understand messages
� Defines interfaces that can be used by different 

Message-Oriented Middleware (MOM) vendors
� Messaging models: publish-subscribe and point-

to-point queuing
� Can support client-server and peer-to-peer 

model
� Can support durable subscriptions

� Temporarily unsubscribe but later receive messages 
when it resubscribes

Conclusion

� This survey categorizes publish-
subscribe system by observing their 
taxonomy: subject based or content-
based, system architecture, matching 
algorithm, multicasting algorithm, 
reliability, and security


