

Technical papers at Amikelive.com

XML Query Processing and Query Languages: A Survey

Abstract-Today’s database is associated
with interoperability between different
domains and applications. This
consequently results in the importance of
data portability in database. XML format
fits the requirements and it has been
increasingly used for serving applications
across different domains and purposes.
However, querying XML document
effectively and efficiently is still a
challenging issue. This paper discusses
query processing issues on XML and
reviews proposed solutions for querying
XML databases by various authors.

Keywords: xml data, query optimization,
query language

I. INTRODUCTION

XML[10] serves dual functionalities as
markup language and data format. It
separates presentation and data thus
offering independency and flexibility for
content association. Due to this nature of
flexibility, data interchanged between two
very different systems can use XML as the
data format. XML tree-like structure is
intuitive, human readable, and easy to
understand. With the help of XML schema
or DTD, the type and attributes of each tag
usable for certain XML document can be
well defined.

An XML query language defines more
comprehensible and structurized construct
for conducting operation on an XML
document or various XML documents. For
processing the query, an XML query engine
or processor translates the syntaxes and
executing the operations hinted by the
query. Output is returned after process and
processing time is projected to be minimum
thus alluding efficient processing.

However, as non binary format, performing
query over XML data pertaining to arbitrary

applications is still an intriguing issue. In
the past, most effort was put to design
query processor to support declaration in
query languages. These days, the issue has
shifted to relational XML storage and
integration with data management system.

The rest of this paper is arranged as follows.
We initially review the evolving path of
XML query languages. Then, we provide
different approaches for xml query
processing by extracting the ideas and
comparing the proposals. Finally, we
provide possible direction for future xml
database and sum up our conclusion.

II. XML QUERY LANGUAGES

Since 2007, XQuery[9] which is an
extension of XPath[10] has been
recommended by W3C as query language
for XML document. However prior to the
establishment of W3C standard, there had
been several researches proposing query
languages for XML.

D. Maier elaborated desired characteristics
of XML query language[12]. His criteria
were massively used as reference for
development of some XML query
languages. Important criteria in his proposal
include xml output of the query,
independence of schema, schema
exploitation if possible, and optimized
query operations. The operations defined in
the proposal are selection which is choosing
document or document element, extraction
which is pulling out elements of a
document, reduction that is realized as
removing sub-elements, restructuring or
constructing a new set of element instances,
and combination as merging operation
carried out over two or more elements
resulting in only single element.

XML-QL[14] is an XML query language
which provides support for querying,

Technical papers at Amikelive.com

Query Langs. Lang. Type Input model Class of query Public recognition
XML-QL functional XML Pattern matching 1998
Lorel declarative OEM Path expressions

within OQL
1997

Quilt functional XML Quilt expressions 2000
XQL functional XML XQL based on

path expressions
1999

XQuery functional XML XQuery 2007
(recommendation)

Table 1 XML query languages in comparison

constructing, transforming and integrating
XML data. This language reflects XML as
semistructured data that have irregular or
rapidly evolving structure. XML-QL uses
element patterns to match data in an XML
document. An extension of XML-QL
named Elixir[15] was proposed to support
ranked queries based on textual similarity.
Pros: schema aware, nested queries
Cons: heavily pattern based, a priori
knowledge of data structure is usually
required, cumbersome syntax.

Lorel[16] is early query language for
semistructured data. It uses OEM (Object
Exchange Model) as the data model for
semistructured data. For querying the
elements, Lorel extends OQL (Object
Query Language) by relying on coercion at
a number of levels to restrain the strong
typing of OQL. Lorel also extends OQL
with path expressions so that user can
specify patterns that are matched to actual
paths in referred data.
Pros: easy syntax
Cons: dependant on OQL parser, limited
functionalities

Quilt[13] is a functional language in which
a query is represented as expression. There
are seven principal forms of Quilt
expressions which are path expressions,
element constructors, FLWR expressions,
expressions with operator and functions,
conditional expressions, quantifiers, and
variable bindings. Besides join operations,
quilt also support nested expressions hence
it basically support subquery within a single

query. Significant features of Quilts were
used for the development of XQuery.
Pros: robust functionalities, subqueries
Cons: no support for textual similarity

XQL[17] uses path expressions hence its
basic constructs correspond directly to the
basic structures of XML. Due to this nature,
XQL is closely related to XPath. In XQL,
document nodes play a central role. Nodes
have identity and they retain their identity,
containment relationships, and sequence in
query results. The nodes themselves may
come from variety of different sources.
However, XQL does not specify how these
nodes are brought to the query. XQL also
supports joins and some functions.
Pros: shorter expressions
Cons: semantics may not be very intuitive

XQuery[9] had been a moving target for
some time before it was established as W3C
recommendation in 2007. A big part of
XQuery semantics adopts Quilt’s. XQuery
uses XPath for path expressions and
FLWOR structure for describing the whole
query. As a recommended standard, a lot of
researches nowadays discuss the method of
optimizing XQuery translation and
processing by a query processor and
integrating XQuery into a full-fledged
XML database management system.
Pros: clear semantics, integration with
XPath
Cons: intersection with XSL

Important characteristics of various XML
query languages can be seen in Table 1.

Technical papers at Amikelive.com

III. APPROACHES FOR XML
QUERY PROCESSING

A query processor extracts the high level
abstraction of declarative query and its
procedural evaluation into a set of low-level
operations[18]. Analogous to SQL
processor, SQL query is translated at
logical access model and then the logical
access prior to accessing and returning the
physical storage model. Levels of
abstraction in XML query processing in
comparison with SQL abstraction levels are
depicted in Table 2.

Level of
Abstraction

XDBS RDBS

Language
model

XQuery SQL

Logical access
model

XML query
algebra

Relational
algebra

Physical access
model

Physical XML
query algebra

Phyiscal DB-
operators

Storage model XTC, natix,
shredded
documents, etc

Record-
oriented DB-
interface

Table 2 XDBS vs. RDBS abstraction levels

From Table 2, XDBS denotes XML
database management system and RDBS
are Relational Database Management
System. The language model is designed to
meet the demands of [12] which are
reflected in the language ability to perform
search functionality and document-order
awareness hence document-centric
characteristics and later on the data-centric
characteristics which is associated with
powerful selection and transformation. The
semantic processing should then be able to
analyze the query and transform it into an
international representation to be used
throughout subsequent optimization steps.
Logical access model should implement
algebraic and non-algebraic procedure to
optimize the internal representation of the
query. Non-algebraic optimization

minimizes intermediary results by
restructuring the query and executing most
selective operations as early as possible.
Algebraic optimization will transform the
internal expression into a more optimized
expression in a semantics-preserving
manner.

Physical access model is related to system-
specific issue. At this level, each logical
algebra operator will be decomposed into
corresponding physical operators. The goal
of this step of optimization is a query
executing plan (QEP) which is arranged of
chosen physical operators and their
sequences of execution.

Finally, the storage model affects the rate of
QEP. For optimized query processing,
appropriate storage model should be
deployed in order to minimize I/O costs,
CPU costs, storage costs for intermediary
results, and communication costs. Currently
used storage models comprise LOBs (Large
Objects), certain XML-to-relational
mappings (shredded documents), or native
storage formats like Niagara[19] and
Timber[20]. The relational XML data
model and native storage model attract
more attentions indicated by various
proposals for respective overlying query
processors.

Various XML query processors have been
proposed for more optimized query
processing. Referring to the abstraction
levels, we’ll divide the query processors
into three categories based on their storage
models: flat-file processing, relational
processing and native storage processing.

Query Processing on Flat File Scheme

In flat file processing, for example when
XML is saved as LOBs, query is executed
after all XML data is loaded and scanned by

Technical papers at Amikelive.com

Figure 1 Index creation in index-filter technique

the query processor. This surely results in
poor performance when the size of file is
big and temporary storage in memory is not
feasible. However, some algorithms were
authored to improve the query processing.
N. Bruno et al[21] studied different
techniques for processing XML queries: y-
filter, index-filter, and pathstack. Y-filter is
query processing by augmenting prefix tree
representation of input queries as an NFA
(Non-deterministic Finite Automaton)
which will output all matches of the queries.
The index filter technique uses indexes
built over certain tags of the input XML
document. PathStack which is a series of
linked stacks is later created for each query
node in a path query in order to track the
data nodes. Figure 1 shows how indexes for
an XML document are created using this
approach.

Query Processing on Relational
Structure

In this approach, XML document or
information related to XML document is
stored in relational database. This step is
taken because relational database performs
better indexing than simple index creation
like in previous approach. RDBMS engine
will instead perform the query processing
by translating XQuery into SQL, running
the SQL query and serialize the XML result.

Relational storage schemes for XML
documents can be classified into three
groups: no XML schema scheme, based on
XML schema, and user defined. In case
there is no schema provided, relational

schema should be derived from the data.
After schema exists relational schema will
be created which contains relationship
among root element and all sub-elements.

In [2], the authors divides relational scheme
into scheme-oblivious and scheme-
conscious approach. Scheme-oblivious
approach maintains a fixed schema by
caputing the tree structure of XML
documents. In contrast, scheme-conscious
approach creates a relational schema based
on DTD/schema of the XML first and based
on the schema, primary-key foreign-key
joins in relational database are set up to
model parent-child relationships in the
XML tree. The authors built SUCXENT++
and observed that schema-oblivious
approach could also outperform schema-
conscious approach.

The authors in [2] also provided
comparisons for other different schemes
like EDGE, XRel, and XParent which are
not discussed here for brevity.

BEA/XQRL[4] is a query processor that
implements relational scheme using
XQuery. Query is parsed and optimized by
query compiler. For eliciting the query,
XDBC interface functions as an interface
between frontend application and query
processor. The compiler will then generate
a query plan to optimize the query. XML
data is represented as stream and parsed as
input by the XML parser. Runtime
operators containing function and operator
libraries will process the stream and
provide output based on the query plan.

Technical papers at Amikelive.com

Figure 2 depicts the overview of BEA
streaming XQuery engine.

Figure 2 Overview of BEA

MonetDB[5] is another query processor for
XQuery which is constituted by Pathfinder
compiler on top of MonetDB RDBMS. It
also has XQuery runtime module that
utilizes loop-lifted staircase join (a method
for evaluating XPath location in a single
sequential scan) as a physical operator so
that the query processing can be improved.

Query Processing on Native Storage
Scheme

Using this approach, XML elements are
assigned label. The purpose of the labeling
is to create unique identifiers that will be
useful for query processing. There are many
labeling schemes which take into account
trade-off between space occupancy,
information contents, and suitability to
updates. The most frequently used is
region-based labeling scheme. The idea of
this scheme is to label elements to reflect
nesting. Figure 3 shows the labeling scheme
for simple nesting. The final label denotes
(start, end, level) status for the node.

Figure 3 Region-based labeling scheme

Another labeling scheme is ORDPATHS
which is implemented in MS SQL server.
This scheme labels each node by a
sequence of integer numbers. Order, depth,

parent, and ancestor-descendant
relationships are recorded in this scheme.

The XML document will later stored as
persistent trees. If disk is used as storage
means, XML nodes will be split among
disk page. Node representation is optimized
based on fixed page size.

Efficient query processing in native storage
is achieved by stack-based algorithms like
StackTreeDesc[22] and holistic twig
joins[23]. StackTreeDesc algorithm uses
stack structure to cache parent elements’
label and when path to destination child
node is reached, information from stack is
combined with child label and returned as
results in descendant order. Subsequently,
stack is emptied for the next operation. On
the other hand, holistic twig joins tries to
avoid constructing intermediary results
when matching twig (search for predicate or
label) patterns.

NaxDB[7] uses native approach and
supports XQuery and XUpdate processing.
In NaxDB, hierarchical tree of linked
objects from XML data is stored using
object oriented extensions of MaxDB from
MySQL. MaxDB system architecture are
built on top of three subsystems: a database
client that enables users to write queries and
receive results, a database server which is
the core subsystem, and persistent object
manager which is responsible for
persistently storing XML data.

IV. TOWARD FUTURE XML
DATABASE
MANAGEMENT SYSTEMS

Future database management system is
associated with application mash-up and
versatility. It will operate across different
platforms thus it has to handle
interoperability among data. Data can be
static or in a form of stream and its flow
may vary from low-density stream to high-
density stream. Database management
system, should be aware of those

Technical papers at Amikelive.com

characteristics and be able to perform well
by minimizing the costs.

This paper has reviewed progress toward
XML database management system.
Current trends inclined to relational scheme
where query for XML data is translated into
declarative SQL to speed up the indexing
process and node solicitation.

Future researches can be targeted to design
better pathfinding algorithm like in [3,6],
alternative query processing like in [1], and
support for transactional XML databases.

V. CONCLUSION

Since XQuery is now a de facto standard
for query language over XML, nowadays a
lot of effort is put to achieve more efficient
and optimized XML query processing.
Current trends are inclined to relational
scheme which consolidates XML with
features of RDBMS. However, several
challenges for the realization of scalable
XML database management system still
exist and future researches should address
them pretty well.

REFERENCES

[1] A. Halverson et al. Mixed Mode XML Query

Processing. In Proceedings of the 29th VLDB
Conference. 2003

[2] S. Prakash, S. B. Bhowmick, S. Madria.
Efficient Recursive XML Query Processing
Using Relational Database Systems. In
Proceedings of ER. 2004

[3] Y. Chen, G. A. Mihaila, S. B. Davidson, S.
Padmanabhan. Efficient Path Query Processing
on Encoded XML. In Proceedings of
International Workshop on High Performance
XML Processing. 2004

[4] D. Florescu et al. The BEA/XQRL Streaming
XQuery Processor. In Proceedings of VLDB
Conference. 2003.

[5] P. Boncz et al. MonetDB/XQuery: A Fast
XQuery Processor Powered by a Relational
Engine. In Proceedings of ACM SIGMOD
International Conference of Management of
Data. 2006

[6] Y. Chen, S.B. Davidson, Y. Zheng. An Efficient
XPath Query Processor for XML Streams. In

Proceedings of 22nd International Conference
on Data Engineering. 2006

[7] J. Hundling, J. Sievers, M. Weske. NaXDB –
Realizing Pipelined XQuery Processing in a
Native XML Database System. In 2nd
International Workshop on XQuery
Implementation, Experience and Perspective.
2005

[8] S. Wang et al. R-SOX: Runtime Semantic
Query Optimization over XML Streams. In
Proceedings of 32nd International Conference on
VLDB. 2006

[9] W3C XML Query Specification, Latest.
http://www.w3.org/TR/xquery

[10]W3C XML Path Language Specification, Latest.
http://www.w3.org/TR/xpath

[11] W3C XML1.0 Recommended Specification.
http://www.w3.org/TR/REC-xml/

[12] D. Maier. Database Desiredata for XML Query
Language.
http://www.w3.org/TandS/QL/QL98/pp/maier.h
tml

[13] D. Chamberlin, J. Robie, D. Florescu. Quilt: An
XML Query Language for Heterogeneous Data
Source. In WebDB (Informal Proceedings),
pages 63-62. 2000

[14] A. Deutsch, M. Fernandez, D. Florescu, A.
Levy, and D. Suciu. XML-QL: A query
language for XML. In Proceedings of 8th
International World Wide Web Conference.
1999

[15] T. Chinenyanga and N. Kushmerick. An
Expressive and Efficient Language for XML
Information Retrieval. In Journal of the
American Society for Inf. Sci. and Tech., 53(6):
438-453. 2002

[16] S. Abiteboul et al. The Lorel Query Language
for Semistructured Data. In International
Journal on Digital Libraries, 1(1):68-88. 1997

[17] J. Robie et al. XQL (XML Query Language).
http://www.ibiblio.org/xql/xql-proposal.html.
August 1999

[18] C. Mathis and T. Harder. A Query Processing
Approach for XML Database Systems. 2005

[19] J. Naughton et al. The Niagara Internet Query
System. In IEEE Data Engineering Bulletin vol
24 issue 2. 2001

[20] H. V. Jagadish et al. A Native XML Database.
In International Conference of VLDB. 2002

[21] N. Bruno, L. Gravano, N. Koudas, and S.
Srivastava. Navigation vs. Index-Based XML
Multi Query Processing. In Proceedings of the
19th ICDE. 2003

[22] S. A.-Khalifa et al. Structural Joins: A Primitive
for Efficient XML Query Pattern Matching. In
International Conference of ICDE. 2002

[23] N. Bruno, N. Koudas, S. Srivastava. Holistic
Twig Joins: Optimal XML Pattern Matching. In
SIGMOD. 2002

