Why Publish-Subscribe Systems

- Internet these days
 - Changed to the scale of distributed systems

- Advantage with publish-subscribe systems
 - Loosely coupled
 - Flexible communication
 - Enable interactivity in large scale settings

- Caveat
 - Different implementations, rather difficult to capture commonalities
Interaction in Publish-Subscribe Systems

- Push-based
 - Messages are automatically broadcast to subscribers
 - Provides tight consistency
 - Stores minimal data
- Pull-based
 - Can be more responsive to user needs
 - No further explanation, I tend to disagree
- Combination of both to achieve better scalability

Taxonomy of Publish-Subscribe Systems

- Subject-based vs Content-based
- System architectures
- Matching algorithms
- Multicast algorithms
- Reliability and Security
Subject-based vs Content-based

- **Subject-based:**
 - A message belongs to groups, channels, or topics
 - Users are subscribed to groups / channels / topics and receive messages associated with the groups

- **Content-based:**
 - Message delivery based on a query or predicate issued by subscriber
 - No need to learn / get info of all available groups
 - But it burdens underlying system to match message for subscription

System Architecture

- Publish-subscribe system can be categorized into two general models:
 - **Client-server model**
 - A component serves as an event server or an event client
 - Event server receives events, store if necessary, and forward
 - Event server communicates with other event server to provide better scalability
 - Event client acts as publisher, subscriber, or both
 - **Peer-to-peer model**
 - Nodes are equal. Each can act as a publisher, subscriber, root of a multicast tree, internal node of a multicast tree or any combination thereof
Client-Server Model

- General topologies
 - Star topology (centralized server)
 - Hierarchical topology
 - Ring topology
 - Irregular polygon topology

Client-Server Model (cont’d)

- Star topology
 - Relies on a single event server to broker between publishers and subscribers
 - Does not scale well
Client-Server Model (cont’d)

- Hierarchical topology
 - Hierarchical relationship between event servers
 - Clients can be either publishers or subscribers
 - Parent server only forwards message to its subtree
 - Provide better scalability

Client-Server Model (cont’d)

- Ring topology
 - Servers exist in peer-to-peer relationship with one another, forming a ring
 - Communication between servers is via bidirectional communication protocol for exchanging subscriptions and notifications
Client-Server Model (cont’d)

- Irregular polygon topology
 - Similar with ring topology
 - However servers are connecting each other in irregular polygon form instead of a ring

Matching Algorithm

- Subject-based system
 - Simplistic way by looking up topic ID for the message and then determine subscribers ID
 - Bayeux -> hashed-suffix mesh algorithm to locate subscribers and route messages across large network
 - Echo -> establishes direct connection between a publisher and subscriber when the subscriber subscribes to the channel
Matching Algorithm (cont’d)

- Content-based system
 - Matching tree algorithm
 - More general term at higher level
 - More refined/specific term at lower level
 - Subscription through tree traversal from up to bottom

Multicast Algorithms

- When the system scales, it needs more efficient event distribution
- Which is often in form of software-based multicast
 - Multicast: broadcasting message from one broker to subscribers that are associated with that broker
- The algorithm varies on different systems
Reliability and Security

- Reliability: delivery of the message should be reliable
- Security: secure delivery of message
 - Key aspects:
 - Authentication -> establishment of identity of originator of an action
 - Confidentiality -> ability to keep others away from accessing messages
 - Integrity -> requirement of keeping the message in its original form
 - Accountability -> ensuring only proper credential is responsible for sending the message

Surveyed Pub-Sub Systems

- Gryphon
 - Content-based using matching tree algorithm
 - Client-server model
 - Link matching algorithm for multicast
 - Broker organization protocol for fault tolerant delivery
 - Targeted toward the distribution of large volumes of data in real-time to thousands of clients in a large public network
Surveyed Pub-Sub Systems (cont’d)

- Scribe
 - Subject-based with numeric keys and node IDs for matching algorithm
 - Peer-to-peer model
 - Group-based algorithm form multicast
 - Best-effort delivery

Surveyed Pub-Sub Systems (cont’d)

- Bayeux
 - Based on Tapestry
 - Subject-based with hashed-suffix mesh algorithm
 - Peer-to-peer model
 - Tolerating failures in routers and network links
Surveyed Pub-Sub Systems (cont’d)

- Siena
 - Content-based with Binary Decision Diagram algorithm
 - Client-server model
 - Hierarchical server topology

Surveyed Pub-Sub Systems (cont’d)

- NaradaBrokering
 - Content-based using matching tree from the content of subscriptions or SQL 92 based on JMS or XML attribute-value pairs for topic subscriptions
 - Client-server model (hierarchical topology)
 - Routing through shortest path computations
Surveyed Pub-Sub Systems (cont’d)

- XMQuestions
 - Hybrid subject-based and content-based using filtering match algorithm
 - Client-server model
 - Reliable event service
 - Keep trying to contact down network target until it’s up

Surveyed Pub-Sub Systems (cont’d)

- Echo
 - Hybrid subject-based and content-based using mapping from topics to the IDs of channels providing the topics
 - Peer-to-peer topology
 - Has efficient event transfer through binary encoding of data using Portable Binary IO
Surveyed Pub-Sub Systems (cont’d)

- JMS
 - Java API that allows applications to create send, receive, and understand messages
 - Defines interfaces that can be used by different Message-Oriented Middleware (MOM) vendors
 - Messaging models: publish-subscribe and point-to-point queuing
 - Can support client-server and peer-to-peer model
 - Can support durable subscriptions
 - Temporarily unsubscribe but later receive messages when it resubscribes

Conclusion

- This survey categorizes publish-subscribe system by observing their taxonomy: subject based or content-based, system architecture, matching algorithm, multicasting algorithm, reliability, and security