What Object Categories / Labels Are In COCO Dataset?

One important element of deep learning and machine learning at large is dataset. A good dataset will contribute to a model with good precision and recall. In the realm of object detection in images or motion pictures, there are some household names commonly used and referenced by researchers and practitioners. The names in the list include Pascal, ImageNet, SUN, and COCO. In this post, we will briefly discuss about COCO dataset, especially on its distinct feature and labeled objects.

tl;dr The COCO dataset labels from the original paper and the released versions in 2014 and 2017 can be viewed and downloaded from this repository. Continue reading

Resolving Error “ImportError: No module name named hypothesis”

When running the test script “relu_op_test.py” to verify Caffe2 installation, you may encounter this error “ImportError: No module name named hypothesis”. Let’s take a look at the content of the script to get some idea about the root cause.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

from caffe2.python import core
from hypothesis import given
import hypothesis.strategies as st
import caffe2.python.hypothesis_test_util as hu
import caffe2.python.mkl_test_util as mu
import numpy as np

import unittest

class TestRelu(hu.HypothesisTestCase):

    @given(X=hu.tensor(),
           engine=st.sampled_from(["", "CUDNN"]),
           **mu.gcs)
    def test_relu(self, X, gc, dc, engine):
        op = core.CreateOperator("Relu", ["X"], ["Y"], engine=engine)
        # go away from the origin point to avoid kink problems
        X += 0.02 * np.sign(X)
        X[X == 0.0] += 0.02
        self.assertDeviceChecks(dc, op, [X], [0])
        self.assertGradientChecks(gc, op, [X], 0, [0])


if __name__ == "__main__":
    unittest.main()

Continue reading

Comprehensive Guide: Installing Caffe2 with GPU Support by Building from Source on Ubuntu 16.04

In the previous posts, we have gone through the installation processes for deep learning infrastructure, such as Docker, nvidia-docker, CUDA Toolkit and cuDNN. With the infrastructure setup, we may conveniently start delving into deep learning: building, training, and validating deep neural network models, and applying the models into a certain problem domain. Translating deep learning primitives into low level bytecode execution can be an enormous task, especially for practitioners without interests in the deep learning calculus. Fortunately, there are several deep learning frameworks that provide the high level programming interface to assist in performing deep learning tasks.

In this post, we will go through the installation of Caffe2, one of the major deep learning frameworks. Caffe2 is adopted from Caffe, a deep learning framework developed by the Barkeley Vision and Learning Center (BVLC) of UC Berkeley. Caffe2 was started with the aim to improve Caffe especially to better support large-scale distributed model training, mobile deployment, reduced precision computation, new hardware, and flexibility of porting to multiple platforms. Continue reading

Guide: Installing Docker Engine Utility for NVIDIA GPU (nvidia-docker2) on Ubuntu 16.04

When performing deep learning tasks especially on a single physical machine, there can be a moment where we need to execute tasks in parallel. Suppose that we are evaluating different models. We may need a task to calculate the precision and recall of a certain model while at the same time we are in need for training another model. We can proceed with the sequential operation, doing the tasks one by one. But life will be much easier if the tasks can be done in parallel. A possible route to achieving this is by creating several containers and perform distinct task in each container.

NVIDIA provides a utility called nvidia-docker. The utility enables creation of Docker containers that leverage CUDA GPU computing when being run. Under the hood, nvidia-docker will add a new Docker runtime called nvidia during the installation. By specifying this runtime when invoking a command in a (new) Docker container, the command execution will be accelerated with the GPUs. Continue reading

List of NVIDIA Desktop Graphics Card Models for Building Deep Learning AI System

If you are doing deep learning AI research and/or development with GPUs, big chance you will be using graphics card from NVIDIA to perform the deep learning tasks. A vantage point with GPU computing is related with the fact that the graphics card occupies the PCI / PCIe slot. From the frugality point of view, it may be a brilliant idea to scavenge unused graphics cards from the fading PC world and line them up on another unused desktop motherboard to create a somewhat powerful compute node for AI tasks. Maybe not.

With the increasing popularity of container-based deployment, a system architect may consider creating several containers with each running different AI tasks. This means that that the underlying GPU resources should then be shared among the containers. NVIDIA provides a utility called NVIDIA Docker or nvidia-docker2 that enables the containerization of a GPU-accelerated machine. As the name suggests, the utility targets Docker container type. Continue reading